Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

g_rotacf(1) [debian man page]

g_rotacf(1)					 GROMACS suite, VERSION 4.5.4-dev-20110404-bc5695c				       g_rotacf(1)

NAME
g_rotacf - calculates the rotational correlation function for molecules VERSION 4.5.4-dev-20110404-bc5695c SYNOPSIS
g_rotacf -f traj.xtc -s topol.tpr -n index.ndx -o rotacf.xvg -[no]h -[no]version -nice int -b time -e time -dt time -[no]w -xvg enum -[no]d -[no]aver -acflen int -[no]normalize -P enum -fitfn enum -ncskip int -beginfit real -endfit real DESCRIPTION
g_rotacf calculates the rotational correlation function for molecules. Three atoms (i,j,k) must be given in the index file, defining two vectors ij and jk. The rotational ACF is calculated as the autocorrelation function of the vector n = ij x jk, i.e. the cross product of the two vectors. Since three atoms span a plane, the order of the three atoms does not matter. Optionally, controlled by the -d switch, you can calculate the rotational correlation function for linear molecules by specifying two atoms (i,j) in the index file. EXAMPLES g_rotacf -P 1 -nparm 2 -fft -n index -o rotacf-x-P1 -fa expfit-x-P1 -beginfit 2.5 -endfit 20.0 This will calculate the rotational correlation function using a first order Legendre polynomial of the angle of a vector defined by the index file. The correlation function will be fitted from 2.5 ps until 20.0 ps to a two-parameter exponential. FILES
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt -s topol.tpr Input Run input file: tpr tpb tpa -n index.ndx Input Index file -o rotacf.xvg Output xvgr/xmgr file OTHER OPTIONS
-[no]hno Print help info and quit -[no]versionno Print version info and quit -nice int 19 Set the nicelevel -b time 0 First frame (ps) to read from trajectory -e time 0 Last frame (ps) to read from trajectory -dt time 0 Only use frame when t MOD dt = first time (ps) -[no]wno View output .xvg, .xpm, .eps and .pdb files -xvg enum xmgrace xvg plot formatting: xmgrace, xmgr or none -[no]dno Use index doublets (vectors) for correlation function instead of triplets (planes) -[no]averyes Average over molecules -acflen int -1 Length of the ACF, default is half the number of frames -[no]normalizeyes Normalize ACF -P enum 0 Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2 or 3 -fitfn enum none Fit function: none, exp, aexp, exp_exp, vac, exp5, exp7, exp9 or erffit -ncskip int 0 Skip N points in the output file of correlation functions -beginfit real 0 Time where to begin the exponential fit of the correlation function -endfit real -1 Time where to end the exponential fit of the correlation function, -1 is until the end SEE ALSO
gromacs(7) More information about GROMACS is available at <http://www.gromacs.org/>. Mon 4 Apr 2011 g_rotacf(1)

Check Out this Related Man Page

g_sgangle(1)					 GROMACS suite, VERSION 4.5.4-dev-20110404-bc5695c				      g_sgangle(1)

NAME
g_sgangle - computes the angle and distance between two groups VERSION 4.5.4-dev-20110404-bc5695c SYNOPSIS
g_sgangle -f traj.xtc -n index.ndx -s topol.tpr -oa sg_angle.xvg -od sg_dist.xvg -od1 sg_dist1.xvg -od2 sg_dist2.xvg -[no]h -[no]version -nice int -b time -e time -dt time -[no]w -xvg enum -[no]one -[no]z DESCRIPTION
Compute the angle and distance between two groups. The groups are defined by a number of atoms given in an index file and may be two or three atoms in size. If -one is set, only one group should be specified in the index file and the angle between this group at time 0 and t will be computed. The angles calculated depend on the order in which the atoms are given. Giving, for instance, 5 6 will rotate the vec- tor 5-6 with 180 degrees compared to giving 6 5. If three atoms are given, the normal on the plane spanned by those three atoms will be calculated, using the formula P1P2 x P1P3. The cos of the angle is calculated, using the inproduct of the two normalized vectors. Here is what some of the file options do: -oa: Angle between the two groups specified in the index file. If a group contains three atoms the normal to the plane defined by those three atoms will be used. If a group contains two atoms, the vector defined by those two atoms will be used. -od: Distance between two groups. Distance is taken from the center of one group to the center of the other group. -od1: If one plane and one vector is given, the distances for each of the atoms from the center of the plane is given separately. -od2: For two planes this option has no meaning. FILES
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt -n index.ndx Input Index file -s topol.tpr Input Run input file: tpr tpb tpa -oa sg_angle.xvg Output xvgr/xmgr file -od sg_dist.xvg Output, Opt. xvgr/xmgr file -od1 sg_dist1.xvg Output, Opt. xvgr/xmgr file -od2 sg_dist2.xvg Output, Opt. xvgr/xmgr file OTHER OPTIONS
-[no]hno Print help info and quit -[no]versionno Print version info and quit -nice int 19 Set the nicelevel -b time 0 First frame (ps) to read from trajectory -e time 0 Last frame (ps) to read from trajectory -dt time 0 Only use frame when t MOD dt = first time (ps) -[no]wno View output .xvg, .xpm, .eps and .pdb files -xvg enum xmgrace xvg plot formatting: xmgrace, xmgr or none -[no]oneno Only one group compute angle between vector at time zero and time t -[no]zno Use the z-axis as reference SEE ALSO
gromacs(7) More information about GROMACS is available at <http://www.gromacs.org/>. Mon 4 Apr 2011 g_sgangle(1)
Man Page