Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

basis(7rheolef) [debian man page]

basis(7rheolef) 						    rheolef-6.1 						   basis(7rheolef)

NAME
basis - polynomial basis SYNOPSYS
The basis class defines functions that evaluates a polynomial basis and its derivatives on a point. The polynomial basis is designated by a string, e.g. "P0", "P1", "P2", "bubble",... indicating the basis. The basis depends also of the reference element: triangle, square, tetrahedron (see reference_element(2)). For instance, on a square, the "P1" string designates the common Q1 four-nodes basis on the refer- ence square. The nodes associated to the Lagrange polynomial basis are also available by its associated accessor. IMPLEMENTATION NOTE
The basis class is a see smart_pointer(2)) class on a basis_rep class that is a pure virtual base class for effective bases, e.g. basis_P1, basis_P1, etc. IMPLEMENTATION
template<class T> class basis_basic : public smart_pointer<basis_rep<T> > { public: // typedefs: typedef basis_rep<T> rep; typedef smart_pointer<rep> base; typedef typename basis_rep<T>::size_type size_type; // allocators: basis_basic (std::string name = ""); // accessors: std::string name() const; size_type degree() const; size_type size (reference_element hat_K) const; void hat_node( reference_element hat_K, std::vector<point_basic<T> >& hat_node) const; void eval( reference_element hat_K, const point_basic<T>& hat_x, std::vector<T>& values) const; void grad_eval( reference_element hat_K, const point_basic<T>& hat_x, std::vector<point_basic<T> >& values) const; }; typedef basis_basic<Float> basis; SEE ALSO
reference_element(2), smart_pointer(2) rheolef-6.1 rheolef-6.1 basis(7rheolef)

Check Out this Related Man Page

domain_indirect(7rheolef)					    rheolef-6.1 					 domain_indirect(7rheolef)

NAME
domain_indirect - a named part of a finite element mesh DESCRIPTION
The domain_indirect class defines a container for a part of a finite element mesh. This describes the connectivity of edges or faces. This class is usefull for boundary condition setting. IMPLEMENTATION NOTE
The domain class is splitted into two parts. The first one is the domain_indirect class, that contains the main renumbering features: it acts as a indirect on a geo class(see geo(2)). The second one is the domain class, that simply contains two smart_pointers: one on a domain_indirect and the second on the geo where renumbering is acting. Thus, the domain class develops a complete geo-like interface, via the geo_abstract_rep pure virtual class derivation, and can be used by the space class (see space(2)). The split between domain_indirect and domain is necessary, because the geo class contains a list of domain_indirect. It cannot contains a list of domain classes, that refers to the geo class itself: a loop in reference counting leads to a blocking situation in the automatic deallocation. IMPLEMENTATION
template <> class domain_indirect_basic<sequential> : public smart_pointer<domain_indirect_rep<sequential> > { public: // typedefs: typedef domain_indirect_rep<sequential> rep; typedef smart_pointer<rep> base; typedef rep::size_type size_type; typedef rep::iterator_ioige iterator_ioige; typedef rep::const_iterator_ioige const_iterator_ioige; // allocators: domain_indirect_basic (); template <class T> domain_indirect_basic ( const geo_basic<T,sequential>& omega, const std::string& name, size_type map_dim, const communicator& comm, const std::vector<size_type>& ie_list); template <class U> domain_indirect_basic ( array<geo_element_auto<heap_allocator<size_type> >,sequential, heap_allocator<size_type> >& d_tmp, const geo_basic<U, sequential>& omega, std::vector<index_set>* ball); void resize (size_type n); // accessors: size_type size() const; size_type dis_size() const; const distributor& ownership() const; const_iterator_ioige ioige_begin() const; const_iterator_ioige ioige_end() const; iterator_ioige ioige_begin(); iterator_ioige ioige_end(); const geo_element_indirect& oige (size_type ioige) const; void set_name (std::string name); void set_map_dimension (size_type map_dim); std::string name () const; size_type map_dimension () const; // i/o: odiststream& put (odiststream&) const; template <class T> idiststream& get (idiststream& ips, const geo_rep<T,sequential>& omega, std::vector<index_set> *ball); }; IMPLEMENTATION
template <> class domain_indirect_basic<distributed> : public smart_pointer<domain_indirect_rep<distributed> > { public: // typedefs: typedef domain_indirect_rep<distributed> rep; typedef smart_pointer<rep> base; typedef rep::size_type size_type; // allocators: domain_indirect_basic (); template<class T> domain_indirect_basic ( const geo_basic<T,distributed>& omega, const std::string& name, size_type map_dim, const communicator& comm, const std::vector<size_type>& ie_list); // accessors/modifiers: size_type size() const; size_type dis_size() const; const distributor& ownership() const; const geo_element_indirect& oige (size_type ioige) const; void set_name (std::string name); void set_map_dimension (size_type map_dim); std::string name () const; size_type map_dimension () const; // distributed specific acessors: const distributor& ini_ownership() const; size_type ioige2ini_dis_ioige (size_type ioige) const; size_type ini_ioige2dis_ioige (size_type ini_ioige) const; // i/o: template <class T> idiststream& get (idiststream& ips, const geo_rep<T,distributed>& omega); template <class T> odiststream& put (odiststream& ops, const geo_rep<T,distributed>& omega) const; }; SEE ALSO
geo(2), space(2) rheolef-6.1 rheolef-6.1 domain_indirect(7rheolef)
Man Page